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Fig. 1. Our method provides a tree-structured visual exploration space for a given unique concept. The nodes of the tree (“𝑣𝑖 ”) are newly learned textual vector
embeddings, injected to the latent space of a pretrained text-to-image model. The nodes encode different aspects of the subject of interest. Through examining
combinations within and across trees, the different aspects can inspire the creation of new designs and concepts.

A creative idea is often born from transforming, combining, and modifying
ideas from existing visual examples capturing various concepts. However,
one cannot simply copy the concept as a whole, and inspiration is achieved
by examining certain aspects of the concept. Hence, it is often necessary to
separate a concept into different aspects to provide new perspectives. In this
paper, we propose a method to decompose a visual concept, represented as
a set of images, into different visual aspects encoded in a hierarchical tree
structure. We utilize large vision-language models and their rich latent space
for concept decomposition and generation. Each node in the tree represents
a sub-concept using a learned vector embedding injected into the latent
space of a pretrained text-to-image model. We use a set of regularizations to
guide the optimization of the embedding vectors encoded in the nodes to
follow the hierarchical structure of the tree. Our method allows to explore
and discover new concepts derived from the original one. The tree provides
the possibility of endless visual sampling at each node, allowing the user

Authors’ addresses: Yael Vinker∗ , Tel Aviv University and ,Google Research, Tel Aviv,
Israel, yaelvinker@mail.tau.ac.il; Andrey Voynov, Google Research, Tel Aviv, Israel,
avoin@google.com; Daniel Cohen-Or, Tel Aviv University and ,Google Research, Tel
Aviv, Israel, cohenor@gmail.com; Ariel Shamir, Reichman University, Tel Aviv, Israel,
arik@runi.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0730-0301/2023/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to explore the hidden sub-concepts of the object of interest. The learned
aspects in each node can be combined within and across trees to create new
visual ideas, and can be used in natural language sentences to apply such
aspects to new designs.
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1 INTRODUCTION
Modeling and design are highly creative processes that often re-
quire inspiration and exploration [Gonçalves et al. 2014]. Designers
often draw inspiration from existing visual examples and concepts -
either from the real world or using images [Eckert and Stacey 2000;
Henderson 1999; Muller 1989]. However, rather than simply repli-
cating previous designs, the ability to extract only certain aspects of
a given concept is essential to generate original ideas. For example,
in Figure 2a, we illustrate how designers may draw inspiration from
patterns and concepts found in nature.
Additionally, by combining multiple aspects from various con-

cepts, designers are often able to create something new. For instance,
it is described [designingbuildings wiki 2021] that the famous Bei-
jing National Stadium, also known as the “Bird’s Nest”, was designed
by a group of architects that were inspired by various aspects of
*Work was done during an internship at Google
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(a) (b)
Fig. 2. Examples of design inspired by visual concepts taken from other
concepts. (a) top left - fashion design by Iris Van Herpen and Chair by
Emmanuel Touraine inspired by nature patterns, bottom left - the Lotus
Temple in India, inspired by the lotus flower (b) Beijing National Stadium is
inspired by a combination of local Chinese art forms - the crackle glazed
pottery that is local to Beijing, and the heavily veined Chinese scholar stones.
©Dress by Iris van Herpen, chair by Emmanuel Touraine from Wikimedia.
Lotus flower, temple, cracked pottery, scholar stone, and bird nest are from
rawpixel.com [Public Domain]. Beijing National Stadium photograph by
Wojtek Gurak from Flickr.

different Chinese concepts (see Figure 2b). The designers combined
aspects of these different concepts – the shape of a nest, porous Chi-
nese scholar stones, and cracks in glazed pottery art that is local to
Beijing, to create an innovative architectural design. Such a design
process is highly exploratory and often unexpected and surprising.
The questions we tackle in this paper is whether a machine can

assist humans in such a highly creative process? Can machines
understand different aspects of a given visual concept, and pro-
vide inspiration for modeling and design? Our work explores the
ability of large vision-language models to do just that - express var-
ious concepts visually, decompose them into different aspects, and
provide almost endless examples that are inspiring and sometimes
unexpected.
We rely on the rich semantic and visual knowledge hidden in

large language-visionmodels. Recently, thesemodels have been used
to perform personalized text-to-image generation [Gal et al. 2022;
Kumari et al. 2023; Ruiz et al. 2023], demonstrating unprecedented
quality of visual concept editing and variation. We extend the idea
presented in [Gal et al. 2022] to allow aspect-aware text-to-image
generation, which can be used to visually explore new ideas derived
from the original visual concept.
Our approach involves (1) decomposing a given visual concept

into different aspects, creating a hierarchy of sub-concepts, (2) pro-
viding numerous image instances of each learned aspect, and (3)
allowing to explore combinations of aspects within the concept and
across different concepts.

We model the exploration space using a binary tree, where each
node in the tree is a newly learned vector embedding in the tex-
tual latent space of a pretrained text-to-image model, representing
different aspects of the original visual concept. A tree provides an
intuitive structure to separate and navigate the different aspects of
a given concept. Each level allows to find more aspects of the con-
cepts in the previous level. In addition, each node by itself contains
a plethora of samples and can be used for exploration. For example,
in Figure 1, the original visual concept is first decomposed into its

dominant semantic aspects: the wooden saucer in “v1” and the bear
drawing in “v2”, next, the bear drawing is further separated into the
general concept of a bear in “v3” and its unique texture in “v4”.
Given a small set of images depicting the concept of interest as

input, we build the tree gradually. For each node, we optimize two
child nodes at a time to match the concept depicted in their parent.
We also utilize a CLIP-based [Radford et al. 2021a] consistency
measurement, to ensure that the concepts depicted in the nodes are
coherent and distinct. The different aspects are learned implicitly,
without any external constraint regarding the type of separation
(such as shape or texture). As a result, unexpected concepts can
emerge in the process and be used as inspiration for new design
ideas. For example the learned aspects can be integrated into existing
concepts by combining them in natural language sentences passed
to a pretrained text-to-image model (see Figure 3). They can also be
used to create new concepts by combining different aspects of the
same tree (intra-tree combination) or across different trees (inter-
tree combination).
We provide many visual results applied to various challenging

concepts. We demonstrate the ability of our approach to find differ-
ent aspects of a given concept, explore and discover new concepts
derived from the original one, thereby inspiring the generation of
new design ideas.

”A chair made of v2״

“A house made of v1”

Original 
Concept

Fig. 3. Combining the learned aspects in natural sentences to produce
aspect-based variations. The original concept is shown on top, along with an
illustration of the chosen aspects from the tree in Figure 1. Below are three
random images generated by a pretrained text-to-image model, conditioned
on the prompts above.
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2 PREVIOUS WORK
Design and Modeling Inspiration. Creativity has been studied in

a wide range of fields [Amabile 1996; Bonnardel and Cauzinille-
Marmèche 2005; Elhoseiny and Elfeki 2019; Kantosalo et al. 2014;
Runco and Jaeger 2012], and although defining it exactly is difficult,
some researchers have suggested that it can be described as the act of
evoking and recombinating information from previous knowledge
to generate new properties [Bonnardel and Cauzinille-Marmèche
2005; Wilkenfeld and Ward 2001]. It is essential, however, to be able
to associate ideas in order to generate original ideas rather than
just mimicking prior work [Brown 2008]. Experienced designers
and artists are more adept at connecting disparate ideas than novice
designers, who need assistance in the evocation process [Bonnardel
and Cauzinille-Marmèche 2005]. By reviewing many exemplars, de-
signers are able to gain a deeper understanding of design spaces and
solutions [Eckert and Stacey 2000]. In the field of human-computer
interaction, a number of studies have been conducted to develop
tools and software to assist designers in the process of ideation
[Chilton et al. 2019; Ivanov et al. 2022; Kang et al. 2021; Koch et al.
2019, 2020]. They are focused on providing better tools for collect-
ing, arranging, and searching visual and textual data, often collected
from the web. In contrast, our work focuses on extracting different
aspects of a given visual concept and generating new images for
inspiration. Our work is close to a line of work on visualizing and
exploring design alternatives for geometry [Denning and Pellacini
2013; Dobos and Steed 2012; Marks et al. 1997; Matejka et al. 2018],
including utilizing evolutionary algorithms to inspire users’ creativ-
ity [Averkiou et al. 2014; Cohen-Or and Zhang 2015; Xu et al. 2012].
However, they mostly work in the field of 3D content generation
and do not decompose different aspects from existing concepts.

Hierarchical Structure of Images and Language. Humans are be-
lieved to comprehend and interpret intricate visual scenes by break-
ing them down into hierarchical parts and wholes [Hinton 1979].
Substantial research has focused on the hierarchical structure of
images, involving capsule networks [Hinton 2021; Hinton et al. 2011;
Sabour et al. 2017], and-or graphs [Tu et al. 2013, 2003], as well as
scene and object parsing [Chen et al. 2014; Liang et al. 2016; Zhang
et al. 2016; Zhou et al. 2017]. The relationship between the hierarchi-
cal nature of language and vision has also been explored in a variety
of tasks, including image-text retrieval [Cao et al. 2022; Karpathy
et al. 2014; Kiros et al. 2014], visual metaconcept learning [Han et al.
2020; Mei et al. 2022], and visual question answering [Aditya et al.
2018; Anderson et al. 2017].

Recently, the field of image generation and editing has undergone
unprecedented evolution with the advancement of large language-
vision models [Nichol et al. 2021; Radford et al. 2021a; Ramesh et al.
2022; Rombach et al. 2022]. These models have been trained on
millions of images and text pairs and have shown to be effective
in performing challenging vision related tasks [Amit et al. 2021;
Avrahami et al. 2022; Gal et al. 2021; Patashnik et al. 2021; Sheynin
et al. 2022]. Furthermore, the strong visual and semantic priors of
these models have also been demonstrated to be effective for artistic
and design tasks [Midjourney 2022; Oppenlaender 2022; Tian and
Ha 2021; Vinker et al. 2022a,b]. In our work, we hypothesize that the
latent space of such models also contain some hierarchical structure

and demonstrate how large language-vision models can be used to
decompose and transform existing concepts into new ones in order
to inspire the development of new ideas.

Personalization. Personalized text-to-image generation has been
introduced recently [Gal et al. 2022; Hu et al. 2021; Kumari et al.
2023; Ruiz et al. 2023], with the goal of creating novel scenes based
on user provided unique concepts. In addition to demonstrating
unprecedented quality results, these technologies enabled intuitive
editing, made design more accessible, and attracted interest even
beyond the research community. We utilize these ideas to facilitate
the ideation process of designers and common users, by learning
different visual aspects of user-provided concepts.
Current personalization methods either optimize a set of em-

beddings to describe the concept [Gal et al. 2022], or modify the
denoising network to tie a rarely used word embedding to the new
concept [Ruiz et al. 2023]. While the latter provides more accurate
reconstruction and is more robust, it uses much more memory and
requires a model for each object. In this regard, we choose to rely on
the approach presented in [Gal et al. 2022]. It is important to note
that our goal is to capture multiple aspects of the given concept, and
not to improve the accuracy of reconstruction as in [Gal et al. 2023;
Han et al. 2023; Shi et al. 2023; Tewel et al. 2023; Voynov et al. 2023;
Wei et al. 2023].

3 PRELIMINARIES
Latent Diffusion Models. Diffusion models are generative models

trained to learn data distribution by gradually denoising a variable
sampled from a Gaussian distribution.
In our work, we use the publicly available text-to-image Stable

Diffusion model [Rombach et al. 2022]. Stable Diffusion is a type
of a latent diffusion model (LDM), where the diffusion process is
applied on the latent space of a pretrained image autoencoder. The
encoder E maps an input image 𝑥 into a latent vector 𝑧, and the
decoder D is trained to decode 𝑧 such that D(𝑧) ≈ 𝑥 . As a second
stage, a denoising diffusion probabilistic model (DDPM) [Ho et al.
2020] is trained to generate codes within the learned latent space.
At each step during training, a scalar 𝑡 ∈ {1, 2, ...𝑇 } is uniformly
sampled and used to define a noised latent code 𝑧𝑡 = 𝛼𝑡𝑧+𝜎𝑡𝜖 , where
𝜖 ∼ N(0, 𝐼 ) and 𝛼𝑡 , 𝜎𝑡 are terms that control the noise schedule, and
are functions of the diffusion process time 𝑡 . The denoising network
𝜖𝜃 which is based on a UNet architecture [Ronneberger et al. 2015],
receives as input the noised code 𝑧𝑡 , the timestep 𝑡 , and an optional
condition vector 𝑐 (𝑦), and is tasked with predicting the added noise
𝜖 . The LDM loss is defined by:

L𝐿𝐷𝑀 = E𝑧∼E(𝑥 ),𝑦,𝜖∼N(0,1),𝑡
[
| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐 (𝑦)) | |22

]
(1)

For text-to-image generation the condition 𝑦 is a text input and
𝑐 (𝑦) represents the text embedding. At inference time, a random
latent code 𝑧𝑇 ∼ N(0, 𝐼 ) is sampled, and iteratively denoised by the
trained 𝜖𝜃 until producing a clean 𝑧0 latent code, which is passed
through the decoder 𝐷 to produce the image 𝑥 .

We next discuss the text encoder and the inversion space.

Text embedding. Given a text prompt 𝑦, for example “A photo
of a cat”, the sentence is first converted into tokens, which are
indexed into a pre-defined dictionary of vector embeddings. The
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Fig. 4. High level pipeline of the “binary reconstruction” stage. We optimize two sibling nodes 𝑣𝑙 , 𝑣𝑟 at a time (marked in red and blue). (a) We first generate a
small training set of images 𝐼𝑝 depicting the concept in the parent node using a pretrained text-to-image model (T2I). At the root, we use the original set
of images 𝐼 0. (b) We then extend the existing dictionary by adding the two new vectors, initialized with the embedding of the word “object”. (c) Lastly, we
optimize 𝑣𝑙 , 𝑣𝑟 w.r.t. the LDM loss (see details in the text).

dictionary is a lookup table that connects each token to a unique
embedding vector. After retrieving the vectors for a given sentence
from the table, they are passed to a text transformer, which processes
the connections between the individual words in the sentence and
outputs 𝑐 (𝑦). The output encoding 𝑐 (𝑦) is then used as a condition
to the UNet in the denoising process. We denote words with 𝑆 , and
the vector embeddings from the lookup table with 𝑉 .

Textual Inversion. We rely on the general framework proposed
by [Gal et al. 2022], who choose the embedding space of 𝑉 as the
target for inversion. They formulate the task of inversion as fit-
ting a new word 𝑠∗ to represent a personal concept, depicted by
a small set of input images provided by the user. They extend the
predefined lookup table with a new embedding vector 𝑣∗ that is
linked to 𝑠∗. The vector 𝑣∗ is often initialized with the embedding
of an existing word from the dictionary that has some relation to
the given concept, and then optimized to represent the desired per-
sonal concept. This process can be thought of as “injecting” the
new concept into the vocabulary. The vector 𝑣∗ is optimized w.r.t.
the LDM loss in Equation (1) over images sampled from the input
set. At each step of optimization, a random image 𝑥 is sampled
from the set, along with a neutral context text 𝑦, derived from the
CLIP ImageNet templates [Radford et al. 2021b] (such as “A photo
of 𝑠∗”). Then, the image 𝑥 is encoded to 𝑧 = E(𝑥) and noised w.r.t.
a randomly sampled timestep 𝑡 and noise 𝜖: 𝑧𝑡 = 𝛼𝑡𝑧 + 𝜎𝑡𝜖 . The
noisy latent image 𝑧𝑡 , timestep 𝑡 , and text embedding 𝑐 (𝑦) are then
fed into a pretrained UNet model which is trained to predict the
noise 𝜖 applied w.r.t. the conditioned text and timestep. This way,
𝑣∗ is optimized to describe the object depicted in the small training
set of images. Note that while the supervision signal technically
arrives from the reconstruction term in Equation (1), it encapsulates
additional information from the knowledge of the pretrained model.
The assumption behind why this process works for personalization
is that the text-conditioned network could better denoise the image
if it is provided with the correct descriptive object information.

4 METHOD
Given a small set of images 𝐼0 = {𝐼01 ...𝐼

0
𝑚} depicting the desired

visual concept, our goal is to construct a rich visual exploration
space expressing different aspects of the input concept.
We model the exploration space as a binary tree, whose nodes

𝑉 = {𝑣1 ..𝑣𝑛} are learned vector embeddings corresponding to newly
discovered words 𝑆 = {𝑠1 ..𝑠𝑛} added to the predefined dictionary,
representing different aspects of the original concept. These newly
learned words are used as input to a pretrained text-to-image model
[Rombach et al. 2022] to generate a rich variety of image examples
in each node. We find a binary tree to be a suitable choice for our
objective, because of the ease of visualization, navigation, and the
quality of the sub-concepts depicted in the nodes (see supplemental
file for further analysis).

4.1 Tree Construction
The exploration tree is built gradually as a binary tree from top to
bottom, where we iteratively add two new nodes at a time. To create
two child nodes, we optimize new embedding vectors according
to the input image-set generated from the concept depicted in the
parent node. During construction, we define two requirements to
encourage the learned embeddings to follow the tree structure:
(1) Binary Reconstruction each pair of children nodes together
should encapsulate the concept depicted by their parent node, and (2)
Coherency each individual node should depict a coherent concept
which is distinct from its sibling. Next, we describe the loss functions
and procedures designed to follow these requirements.

Binary Reconstruction. We use the reconstruction loss sug-
gested in [Gal et al. 2022], with some modifications tailored to our
goal. The procedure is illustrated in Figure 4 – in each optimization
phase, our goal is to learn two vector embeddings 𝑣𝑙 , 𝑣𝑟 correspond-
ing to the left and right sibling nodes, whose parent node is marked
with 𝑣𝑝 (illustrated in Figure 4, left). We begin with generating a
new small training set of images 𝐼𝑝 = {𝐼𝑝1 ...𝐼

𝑝

10}, reflecting the con-
cept depicted by the vector 𝑣𝑝 (Figure 4a). At the root, we use the
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Fig. 5. Optimization iterations. The embedding of both children nodes
𝑣𝑙 , 𝑣𝑟 are initilized with the word “object”. During iterations, they gradually
depict two aspects of the original concept. Note that using both embedding
together reconstructs the original parent concept.

original set of images 𝐼0. Next, we extend the current dictionary by
adding two new vector embeddings 𝑣𝑙 , 𝑣𝑟 , corresponding to the right
and left children of their parent node 𝑣𝑝 (Figure 4b). To represent
general concepts, the newly added vectors are initialized with the
embedding of the word “object”. At each iteration of optimization
(Figure 4c), an image 𝑥 is sampled from the set 𝐼𝑝 and encoded to
form the latent image 𝑧 = E(𝑥). A timestep 𝑡 and a noise 𝜖 are
also sampled to define the noised latent 𝑧𝑡 = 𝛼𝑡𝑧 + 𝜎𝑡𝜖 (marked in
yellow). Additionally, a neutral context text𝑦 is sampled, containing
the new placeholder words in the following form “A photograph of
𝑠𝑙 𝑠𝑟 ”, to reinforce that optimizing toward such concatenated text
prompts ideally will capture naturally different concepts for the left
and right nodes.
The noised latent 𝑧𝑡 is fed to a pretrained Stable Diffusion UNet

model 𝜖𝜃 , conditioned on the CLIP embedding 𝑐 (𝑦) of the sampled
text, to predict the noise 𝜖 . The prediction loss is backpropagated
w.r.t. the vector embeddings 𝑣𝑙 , 𝑣𝑟 :

{𝑣𝑙 , 𝑣𝑟 } = argmin
𝑣
E𝑧∼E(𝑥 ),𝑦,𝜖∼N(0,1),𝑡

[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐 (𝑦))∥22

]
. (2)

This procedure encourages 𝑣𝑙 , 𝑣𝑟 together to express the visual con-
cept of their parent depicted in the set 𝐼𝑝 . Figure 5 illustrates how
the two embeddings begin by representing the word “object”, and
gradually converge to depict two aspects of the input concept. We
hypothesize that the nodes do not converge to a similar concept
because of the model’s training on natural sentences, where consec-
utive identical words are uncommon.
We use the timestep sampling approach proposed in ReVersion

[Huang et al. 2023], which skews the sampling distribution so that a
larger 𝑡 is assigned a higher probability, according to the following
importance sampling function:

𝑓 (𝑡) = 1
𝑇
(1 − 𝛼 cos

𝜋𝑡

𝑇
) . (3)

We set 𝛼 = 0.5. We find that this sampling approach improves
stability and content separation. This choice is further discussed in
the supplementary file.

Coherency. The resulting pair of embeddings described above
together often capture the parent concept depicted in the original
images well. However, the images produced by each embedding
individually may not always reflect a logical sub-concept that is
coherent to the observer.

Inconsistent SetConsistent Set

Fig. 6. We demonstrate two sets of random images generated from two
different vector embeddings. An example of a consistent set can be seen on
the left, where the concept depicted in the node is clear. We show an incon-
sistent set on the right, where images appear to depict multiple concepts.

We find that such incoherent embeddings are frequently charac-
terized by inconsistent appearance of the images generated from
them, i.e., it can be difficult to identify a common concept behind
them. For example, in Figure 6 the concept depicted in the set on
the right is not clear, compared to the set of images on the left.

This issue may be related to the observation that textual inversion
often results in vector embedding outside of the distribution of com-
mon words in the dictionary, affecting editability as well [Voynov
et al. 2023]. It is thus possible that embeddings that are highly un-
usual may not behave as “real words”, thereby producing incoherent
visual concepts. In addition, textual-inversion based methods are
sometimes unstable and depend on the seed and iteration selection.

To overcome this issue we define a consistency test, which allows
us to filter out incoherent embeddings. We begin by running the
procedure described above to find 𝑣𝑙 , 𝑣𝑟 using 𝑘 different seeds in
parallel for a sufficient number of steps (in our experiments we
found that k=4 and 200 steps are sufficient since at that point the
embeddings have already progressed far enough from their initial-
ization word “object” as seen in Figure 5).
This gives us an initial set of 𝑘 pairs of vector embeddings 𝑉𝑠 =

{𝑣𝑖
𝑙
, 𝑣𝑖𝑟 }𝑘𝑖=1. For each vector 𝑣 ∈ 𝑉𝑠 we generate a random set 𝐼 𝑣 of

40 images using our pre-trained text-to-image model. We then use
a pretrained CLIP Image encoder [Radford et al. 2021a], to produce
the embedding 𝐶𝐿𝐼𝑃 (𝐼 𝑣

𝑖
) of each image in the set.

We define the consistency of two sets of images 𝐼𝑎, 𝐼𝑏 as follows:

C(𝐼𝑎, 𝐼𝑏 ) =𝑚𝑒𝑎𝑛
𝐼𝑎
𝑖
∈𝐼𝑎,𝐼𝑏

𝑗
∈𝐼𝑏 ,𝐼𝑎

𝑖
≠𝐼𝑏

𝑗
(𝑠𝑖𝑚(𝐶𝐿𝐼𝑃 (𝐼𝑎𝑖 ),𝐶𝐿𝐼𝑃 (𝐼

𝑏
𝑗 ))) . (4)

Note that |C(𝐼𝑎, 𝐼𝑏 ) | ≤ 1 because 𝑠𝑖𝑚(𝑥,𝑦) =
𝑥 ·𝑦

| |𝑥 | | · | |𝑦 | | is the
cosine similarity between a pair of CLIP embedding of two different
images. This formulation is motivated by the observation that if a set
of images depicts a certain semantic concept, their vector embedding
in CLIP’s latent space should be relatively close to each other. Ideally,
we are looking for pairs in which each node is coherent by itself,
and in addition, two sibling nodes are distinct from each other. We
therefore choose the pair of tokens {𝑣∗

𝑙
, 𝑣∗𝑟 } ∈ 𝑉𝑠 as follows:

{𝑣∗
𝑙
, 𝑣∗𝑟 } = argmax

{𝑣𝑖
𝑙
,𝑣𝑖𝑟 }∈𝑉𝑠

[
𝐶𝑖
𝑙
+𝐶𝑖

𝑟 + (𝑚𝑖𝑛(𝐶𝑖
𝑙
,𝐶𝑖

𝑟 ) − C(𝐼 𝑣
𝑖
𝑙 , 𝐼 𝑣

𝑖
𝑟 ))

]
, (5)

where 𝐶𝑖
𝑙
= C(𝐼 𝑣

𝑖
𝑙 , 𝐼 𝑣

𝑖
𝑙 ),𝐶𝑖

𝑟 = C(𝐼 𝑣𝑖𝑟 , 𝐼 𝑣𝑖𝑟 ). Note that we do not

consider the absolute cross consistency score C(𝐼 𝑣
𝑖
𝑙 , 𝐼 𝑣

𝑖
𝑟 ), but we
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0.590.79

0.730. 59

𝑣!" 𝑣#"

𝑣#"

𝑣!" 0.730.78

0.810. 73

𝑣!$ 𝑣#$

𝑣#$

𝑣!$

Fig. 7. Consistency scores matrix between image sample sets of nodes. The
seed selection process favors pairs of siblings that have a high consistency
score within themselves, and low consistency score between each other. In
this example, the left pair is better than the right.

compute its relative difference from the node with the minimum
consistency. We demonstrate this procedure in Figure 7. We opti-
mized two pairs of sibling nodes {𝑣1

𝑙
, 𝑣1𝑟 }, {𝑣2𝑙 , 𝑣

2
𝑟 } using two seeds,

w.r.t. the same parent node. Each matrix illustrates the consistency
scores𝐶𝑖

𝑙
, C(𝐼 𝑣

𝑖
𝑙 , 𝐼 𝑣

𝑖
𝑟 ),𝐶𝑖

𝑟 obtained for the sets of images of each seed.
In both cases, the scores on the diagonal are high, which indicates
that each set is consistent within itself. While the sets on the right
obtained a higher consistency score within each node, they also
obtained a relatively high score across the nodes (0.73), which means
they are not distinct enough.

After selecting the optimal seed, we continue the optimization of
the chosen vector pair w.r.t. the reconstruction loss in Equation (2)
for 1500 iterations.

5 RESULTS
In Figures 1, 13 and 14, we show examples of possible trees. For
each node in the tree, we use its corresponding placeholder word
as an input to a pretrained text-to-image model [Rombach et al.
2022], to generate a set of random images. These images have been
generated without any prompt engineering or additional words
within the sentence, except for the word itself. For clarity, we use the
notion ”𝑣” next to each set of images, illustrating that the presented
set depicts the concept learned in that node. As can be seen, the
learned embeddings in each node capture different elements of the
original concept, such as the concept of a cat and a sculpture, as
well as the unique texture in Figure 13. The sub-concepts captured
in the nodes follow the tree’s structure, where the concepts are
decomposed gradually, with two sibling nodes decomposing their
parent node. This decomposition is done implicitly, without external
guidance regarding the split theme. For many more trees please see
our supplementary file.

5.1 Applications
The constructed tree provides a rich visual exploration space for con-
cepts related to the object of interest. In this section we demonstrate
how this space can be used for novel combination and exploration.
Intra-tree combination – the generated tree is represented via the
set of optimized vectors𝑉 = {𝑣1 ..𝑣𝑛}. Once this set is learned we can
use it to perform further exploration and conceptual editing within
the object’s “inner world”. We can explore combinations of different
aspects by composing sentences containing different subsets of 𝑉 .

For example, in the bottom left area of Figure 13, we have combined
𝑣1 and 𝑣5, which resulted in a variation of the original sculpture
without the sub-concept relating to the cat (depicted in 𝑣6). At the
bottom right, we have excluded the sub-concept depicted in 𝑣5
(related to a blue sculpture), which resulted in a new representation
of a flat cat with the body and texture of the original object.

Such combinations can provide new perspectives on the original
concept and inspiration that highlights only specific aspects.
Inter-tree combination – it is also possible to combine concepts
learned across different trees, since we only inject new words into
the existing dictionary, and do not fine-tune the model’s weights as
in other personalization approaches [Ruiz et al. 2023].
To achieve this, we first build the trees independently for each

concept and then visualize the sub-concepts depicted in the nodes
to select interesting combinations. In Figure 8 the generated original
concepts are shown on top, along with an illustration of the concepts
depicted in the relevant nodes. To combine the concepts across the
trees, we simply place the two placeholder words together in a
sentence and feed it into the pretrained text-to-image model. As can
be seen, on the left the concept of a “saucer with a drawing” and the
“creature” from the mug are combined to create many creative and
surprising combinations of the two. On the right, the blue sculpture
of a cat is combined with the stone depicted at the bottom of the
Buddha, which together create new sculptures in which the Buddha
is replaced with the cat.
Text-based generation – the placeholder words of the learned
embeddings can be composed into natural language sentences to
generate various scenes based on the learned aspects. We illustrate
this at the top of Figure 9, where we integrate the learned aspects
of the original concepts in new designs (in this case of a chair and a
dress). At the bottom of Figure 9, we show the effect of using the
learned vectors of the original concepts instead of specific aspects.
We apply Textual Inversion (TI) [Gal et al. 2022] with the default
hyperparameters to fit a new word depicting each concept, and
choose a representative result. The results suggest that without
aspect decomposition, generation can be quite limited. For instance,
in the first column, both the dress and the chair are dominated by
the texture of the sculpture, whereas the concept of a blue cat is
almost ignored. Furthermore, TI may exclude the main object of
the sentence (second and third columns), or the results may capture
all aspects of the object (fourth column), thereby narrowing the
exploration space.

5.2 Evaluations
Consistency Score Validation. We first show that our consistency

test proposed in Equation (4) aligns well with human perception of
consistency. We conducted a perceptual study with 35 participants
in which we presented 15 pairs of random image sets depicting sub-
concepts of 9 objects. We asked participants to determine which of
the sets is more consistent within itself in terms of the concept it
depicts (an example of such a pair can be seen in Figure 6). We also
measured the consistency scores for these sets using our CLIP-based
approach, and compared the results. The CLIP-based scores matched
the human choices in 82.3% (stdv: 1%) of the cases.
Reconstruction and Separation. We quantitatively evaluate our

method’s ability to follow the tree requirements of reconstruction
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Fig. 8. Examples of inter-tree combinations. We use our method to produce trees for the four concepts depicted in the first row. We then combine aspects
from different trees to generate a set of inter-tree combinations (the chosen aspects are shown next to each concept). We also show combinations of three
aspects from different trees at the bottom.

and sub-concept separation.We collected a set of 13 concepts (9 from
existing personalization datasets [Gal et al. 2022; Kumari et al. 2023],
and 4 new concepts from our dataset), and generated 13 correspond-
ing trees. Note that we chose concepts that are complex enough and
have the potential to be divided into different aspects (we discuss
this in the limitations section). For each pair of sibling nodes 𝑣𝑙 , 𝑣𝑟
and their parent node 𝑣𝑝 , we produced their corresponding sets of
images – 𝐼 𝑣𝑙 , 𝐼 𝑣𝑟 , 𝐼 𝑣𝑝 (where for nodes in the first level we used the
original set of images 𝐼0 as 𝐼 𝑣𝑝 ). We additionally produced the set
𝐼 𝑣𝑙 𝑣𝑟 , depicting the joint concept learned by two sibling nodes.
We first compute C(𝐼 𝑣𝑝 , 𝐼 𝑣𝑙 𝑣𝑟 ) to measure the quality of recon-

struction, i.e., that two sibling nodes together represent the concept
depicted in their parent node. The average score obtained for this
measurement is 0.8, which suggests that on average, the concept
depicted by the children nodes together is consistent with that of
their parent node. Second, we measure if two sibling nodes depict
distinct concepts by using C(𝐼 𝑣𝑙 , 𝐼 𝑣𝑟 ). The average score obtained
was 0.59, indicating there is larger separation between siblings, but
they are still close.

Aspects Relevancy. We assess the ability of our method to encode
different aspects connected to the input concept via a perceptual
study. We chose 5 objects from the dataset above, and 3 random
aspects for each object. We presented participants with a random set
of images depicting one aspect of one object at a time. We asked the
participants to choose the object they believe this aspect originated
from, along with the option ‘none’. In total we collected answers
from 35 participants, and achieved recognition rates of 87.8% (stdv:

1%). These evaluations demonstrate that our method can indeed sep-
arate a concept into relevant aspects, where each new sub-concept is
coherent, and the binary tree structure is valid - i.e., the combination
of two children can reconstruct the parent concept.

5.3 Ablation
Binary Tree. Our choice to use a binary tree stems from two main

reasons: (1) complexity, and (2) consistency.
Our method allows to build a tree with more than two children

per node, however, this can add redundant complexity to the method.
For example, using three children nodes, after only two levels we
will get 12 aspects, which may be difficult to visualize and navigate.
In addition, the use of more than two children will result in a longer
running time in each level since we will have to split more nodes.
In terms of consistency, we observe that when optimizing more

than two nodes at a time, the chance of receiving inconsistent nodes
increases. Often, two nodes will be consistent, and the third node is
inconsistent or may depict irrelevant concepts such as background.
We visually demonstrate this in Figure 10, on the “red teapot” object.
We present the aspects obtained from the optimal seed after 200
iterations, for the case of two nodes (left) and for the case of three
nodes (right). As can be seen, the sub-concept in 𝑣3 for the 3 nodes
optimization does not appear to be consistent or comprehensible,
and therefore is not useful in achieving our goal of extracting aspects
from the parent concept.
The following quantitative experiment further confirms this ob-

servation. We obtained 52 trees for our set of 13 objects (using four
seeds for each object as described in the main paper). Each tree
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Original
Concept

“A chair
made 
of {}”

“A dress
made
of {}”

Chosen
Aspect

Ours

TI

“A chair
made 
of {}”

“A dress
made
of {}”

Fig. 9. Combining the learned aspects in natural sentences to produce
aspect-based variations. The original concepts are shown at the top. In the
third and fourth rows are our text-based generation results applied with the
aspects depicted in the second row. Under “TI” we show image generation for
the concepts in the first row (without our aspect decomposition approach),
produced using [Gal et al. 2022].

is a 3-node tree with one level, resulting in a total number of 156
nodes. We measured our CLIP-based consistency test on each node
to determine its average consistency score. Next, for each tree, we
sorted the 3 nodes {𝑣1, 𝑣2, 𝑣3} according to their consistency score,
from the most consistent (𝑣1) to the least consistent (𝑣3). We then av-
erage the scores of {𝑣1, 𝑣2, 𝑣3} across all trees, and received the final
scores of: 0.804, 0.742, 0.633 for {𝑣1, 𝑣2, 𝑣3} correspondingly. The no-
ticeable consistency gap between the top 2 nodes and the third node
indicates that, on average, two of the three nodes are consistent,
while the last may contain incoherent information. This experiment
correlates well with our visual observation (as demonstrated in
Figure 10).

5.4 Vectors Initialization
As mentioned in Section 4.1, we use the embedding of the word
“object” to initialize the new vectors 𝑣𝑙 , 𝑣𝑟 . In choosing the word
“object” as a generic concept, we eliminate the requirement for user-
defined input specific to the concept. Furthermore, the use of a
most general concept for initialization allows for more unexpected
decompositions to occur.

2 Nodes 3 Nodes
“v1”

“v2”

“v3”

“v1”

“v2”

Original
Concept

Fig. 10. Comparison of optimizing for two child nodes (left) v.s. three child
nodes (right). Using three nodes increases the chance of arriving at incon-
sistent or irrelevant concepts.

Fig. 11. Comparing different initialization approaches. The columns show
the different initialization used, and the rows show the results after 200
iterations.

It is possible, however, for the user to select other words for
initialization if they wish to encourage the generation of certain
sub-aspects. In Figure 11, we demonstrate the impact of using dif-
ferent initialization approaches. The first column illustrates the
baseline results, using "object" to initialize both nodes. The second
column displays the results of initialization based on potential user
defined inputs – a “cat” and a “sculpture” for the left and right nodes,
respectively. In the third column, we present an alternative generic
initialization option consisting of “object” and “style”. Each experi-
ment was conducted using four different seeds and 200 iterations,
with similar results.

As can be seen in the first column the results we get are consistent,
with a maximum consistency score of 1.93. In the second column,
we can see that v1 represents the cat aspect and v2 represents a
concept that is more akin to a sculpture, with a consistency score of
1.76. The third column indicates that using "style" instead of "object"
negatively impacted the results, resulting in a consistency score of
1.69. More examples can be found in the supplemental file.
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6 LIMITATIONS
Our method may fail to decompose an input concept. We divide the
failure cases into four general categories illustrated in Figure 12:
(1) Background leakage - the training images should be taken from
different perspectives and with varying backgrounds (this require-
ment also exists in [Gal et al. 2022]). When images do not meet
these criteria, one of the sibling nodes often captures information
from the background instead of the object itself.
(2) Incomprehensible aspects - some separations may not satisfy
clear, interesting, aesthetic, or inspiring aspects, even when the
coherency principle holds.
(3) Dominant sub-concept - we illustrate this in Figure 12c, where
we show a split on the second level of the concept depicted under
“𝑣1𝑣2”. As shown, v1 has dominated the information, so even if the
coherency term is held, decomposition to two sub-concepts has not
really been achieved.
(4) Large overlap when two aspects share information – we illustrate
this in Figure 12d, which is a split of the second level, where both
concepts depicted in v1 and v2 appear to share too similar.
We hope that such limitations could be resolved in the future

using additional regularization terms in the optimization process or
through the development of more robust personalization methods.
Additionally, our method can have difficulties to create deeper

trees. Our observations show two main factors influencing whether
a node could be further split – the complexity of the concept depicted
in the node and its’ coherency. As we go deeper into the tree, the
concepts become simpler andmore challenging to decompose.When
a concept reaches one of these conditions we stop the tree growth.
This opens interesting avenues for future research to explore how
can concept trees be further extended.
Currently the time for decomposing a node can reach up to ap-

proximately 40 minutes on a single A100 GPU. However, as textual
inversion optimization techniques will progress, so will our method.

7 CONCLUSIONS
We presented a method to implicitly decompose a given visual con-
cept into various aspects to construct an inspiring visual exploration
space. Our method can be used to generate numerous representa-
tions and variations of a certain subject, to combine aspects across
objects, as well as to use these aspects as part of natural language
sentences that drive visual generation of novel concepts.

The aspects are learned implicitly, without external guidance re-
garding the type of separation. This implicit approach also provides
another small step in revealing the rich latent space of large vision-
language models, allowing surprising and creative representations
to be produced. We demonstrated the effectiveness of our method
on a variety of challenging concepts. We hope our work will open
the door to further research aimed at developing and improving
existing tools to assist and inspire designers and artists.

8 ETHICAL CONSIDERATIONS
One of the drawbacks of text-to-image models is their tendency to
inherit biases from the large-scale internet data used during train-
ing. These biases naturally extend to our decomposition approach,
potentially resulting in biased or stereotypical representations of

“v1” “v2”

(a) Background leakage

(c) Dominant concept (d) Large overlap

“v1 v2” “v1 v2” “v1” “v2”

(b) Incomprehensible aspects

“v1” “v2”“v1 v2” “v1 v2” “v1” “v2”

Fig. 12. We demonstrate four general cases of decomposition failure.

specific objects or concepts. Hence, it is crucial to exercise caution
when using our method and be mindful of these biases.

However, our approach can serve as a means of detecting biases
by analyzing the tokens learned during the decomposition process.
This underscores the need for further research into concept rep-
resentations in text-to-image models, given the significant impact
that bias can have on image generation.
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Fig. 13. Exploration tree for the cat sculpture. At the bottom we show examples of possible intra-tree combinations.
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Fig. 14. Exploration tree for a decorated teapot. At the bottom we show examples of possible text-based generation.
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